extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C30)⋊1C22 = D4×D15 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 60 | 4+ | (C2xC30):1C2^2 | 240,179 |
(C2×C30)⋊2C22 = D5×C3⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 60 | 4 | (C2xC30):2C2^2 | 240,149 |
(C2×C30)⋊3C22 = S3×C5⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 60 | 4 | (C2xC30):3C2^2 | 240,150 |
(C2×C30)⋊4C22 = D10⋊D6 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 60 | 4+ | (C2xC30):4C2^2 | 240,151 |
(C2×C30)⋊5C22 = C22×S3×D5 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 60 | | (C2xC30):5C2^2 | 240,202 |
(C2×C30)⋊6C22 = C3×D4×D5 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 60 | 4 | (C2xC30):6C2^2 | 240,159 |
(C2×C30)⋊7C22 = C5×S3×D4 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 60 | 4 | (C2xC30):7C2^2 | 240,169 |
(C2×C30)⋊8C22 = D4×C30 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30):8C2^2 | 240,186 |
(C2×C30)⋊9C22 = C2×C15⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30):9C2^2 | 240,184 |
(C2×C30)⋊10C22 = C23×D15 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30):10C2^2 | 240,207 |
(C2×C30)⋊11C22 = C6×C5⋊D4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30):11C2^2 | 240,164 |
(C2×C30)⋊12C22 = D5×C22×C6 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30):12C2^2 | 240,205 |
(C2×C30)⋊13C22 = C10×C3⋊D4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30):13C2^2 | 240,174 |
(C2×C30)⋊14C22 = S3×C22×C10 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30):14C2^2 | 240,206 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C30).1C22 = D4⋊2D15 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | 4- | (C2xC30).1C2^2 | 240,180 |
(C2×C30).2C22 = Dic3×Dic5 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 240 | | (C2xC30).2C2^2 | 240,25 |
(C2×C30).3C22 = D10⋊Dic3 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).3C2^2 | 240,26 |
(C2×C30).4C22 = D6⋊Dic5 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).4C2^2 | 240,27 |
(C2×C30).5C22 = D30⋊4C4 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).5C2^2 | 240,28 |
(C2×C30).6C22 = C30.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 240 | | (C2xC30).6C2^2 | 240,29 |
(C2×C30).7C22 = Dic15⋊5C4 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 240 | | (C2xC30).7C2^2 | 240,30 |
(C2×C30).8C22 = C6.Dic10 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 240 | | (C2xC30).8C2^2 | 240,31 |
(C2×C30).9C22 = C2×D5×Dic3 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).9C2^2 | 240,139 |
(C2×C30).10C22 = Dic5.D6 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | 4 | (C2xC30).10C2^2 | 240,140 |
(C2×C30).11C22 = C30.C23 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | 4- | (C2xC30).11C2^2 | 240,141 |
(C2×C30).12C22 = C2×S3×Dic5 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).12C2^2 | 240,142 |
(C2×C30).13C22 = Dic3.D10 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | 4 | (C2xC30).13C2^2 | 240,143 |
(C2×C30).14C22 = C2×D30.C2 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).14C2^2 | 240,144 |
(C2×C30).15C22 = C2×C15⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).15C2^2 | 240,145 |
(C2×C30).16C22 = C2×C3⋊D20 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).16C2^2 | 240,146 |
(C2×C30).17C22 = C2×C5⋊D12 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | | (C2xC30).17C2^2 | 240,147 |
(C2×C30).18C22 = C2×C15⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 240 | | (C2xC30).18C2^2 | 240,148 |
(C2×C30).19C22 = C3×D4⋊2D5 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | 4 | (C2xC30).19C2^2 | 240,160 |
(C2×C30).20C22 = C5×D4⋊2S3 | φ: C22/C1 → C22 ⊆ Aut C2×C30 | 120 | 4 | (C2xC30).20C2^2 | 240,170 |
(C2×C30).21C22 = C15×C4○D4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | 2 | (C2xC30).21C2^2 | 240,188 |
(C2×C30).22C22 = C4×Dic15 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).22C2^2 | 240,72 |
(C2×C30).23C22 = C30.4Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).23C2^2 | 240,73 |
(C2×C30).24C22 = C60⋊5C4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).24C2^2 | 240,74 |
(C2×C30).25C22 = D30⋊3C4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).25C2^2 | 240,75 |
(C2×C30).26C22 = C30.38D4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).26C2^2 | 240,80 |
(C2×C30).27C22 = C2×Dic30 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).27C2^2 | 240,175 |
(C2×C30).28C22 = C2×C4×D15 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).28C2^2 | 240,176 |
(C2×C30).29C22 = C2×D60 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).29C2^2 | 240,177 |
(C2×C30).30C22 = D60⋊11C2 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | 2 | (C2xC30).30C2^2 | 240,178 |
(C2×C30).31C22 = C22×Dic15 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).31C2^2 | 240,183 |
(C2×C30).32C22 = C12×Dic5 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).32C2^2 | 240,40 |
(C2×C30).33C22 = C3×C10.D4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).33C2^2 | 240,41 |
(C2×C30).34C22 = C3×C4⋊Dic5 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).34C2^2 | 240,42 |
(C2×C30).35C22 = C3×D10⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).35C2^2 | 240,43 |
(C2×C30).36C22 = C3×C23.D5 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).36C2^2 | 240,48 |
(C2×C30).37C22 = C6×Dic10 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).37C2^2 | 240,155 |
(C2×C30).38C22 = D5×C2×C12 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).38C2^2 | 240,156 |
(C2×C30).39C22 = C6×D20 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).39C2^2 | 240,157 |
(C2×C30).40C22 = C3×C4○D20 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | 2 | (C2xC30).40C2^2 | 240,158 |
(C2×C30).41C22 = C2×C6×Dic5 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).41C2^2 | 240,163 |
(C2×C30).42C22 = Dic3×C20 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).42C2^2 | 240,56 |
(C2×C30).43C22 = C5×Dic3⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).43C2^2 | 240,57 |
(C2×C30).44C22 = C5×C4⋊Dic3 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).44C2^2 | 240,58 |
(C2×C30).45C22 = C5×D6⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).45C2^2 | 240,59 |
(C2×C30).46C22 = C5×C6.D4 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).46C2^2 | 240,64 |
(C2×C30).47C22 = C10×Dic6 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).47C2^2 | 240,165 |
(C2×C30).48C22 = S3×C2×C20 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).48C2^2 | 240,166 |
(C2×C30).49C22 = C10×D12 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | | (C2xC30).49C2^2 | 240,167 |
(C2×C30).50C22 = C5×C4○D12 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 120 | 2 | (C2xC30).50C2^2 | 240,168 |
(C2×C30).51C22 = Dic3×C2×C10 | φ: C22/C2 → C2 ⊆ Aut C2×C30 | 240 | | (C2xC30).51C2^2 | 240,173 |
(C2×C30).52C22 = C15×C22⋊C4 | central extension (φ=1) | 120 | | (C2xC30).52C2^2 | 240,82 |
(C2×C30).53C22 = C15×C4⋊C4 | central extension (φ=1) | 240 | | (C2xC30).53C2^2 | 240,83 |
(C2×C30).54C22 = Q8×C30 | central extension (φ=1) | 240 | | (C2xC30).54C2^2 | 240,187 |